Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces

نویسندگان

  • Ha Quang Minh
  • Marco San-Biagio
  • Vittorio Murino
چکیده

This paper introduces a novel mathematical and computational framework, namely Log-Hilbert-Schmidt metric between positive definite operators on a Hilbert space. This is a generalization of the Log-Euclidean metric on the Riemannian manifold of positive definite matrices to the infinite-dimensional setting. The general framework is applied in particular to compute distances between covariance operators on a Reproducing Kernel Hilbert Space (RKHS), for which we obtain explicit formulas via the corresponding Gram matrices. Empirically, we apply our formulation to the task of multi-category image classification, where each image is represented by an infinite-dimensional RKHS covariance operator. On several challenging datasets, our method significantly outperforms approaches based on covariance matrices computed directly on the original input features, including those using the Log-Euclidean metric, Stein and Jeffreys divergences, achieving new state of the art results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

Non Positively Curved Metric in the Space of Positive Definite Infinite Matrices

We introduce a Riemannian metric with non positive curvature in the (infinite dimensional) manifold Σ∞ of positive invertible operators of a Hilbert space H, which are scalar perturbations of Hilbert-Schmidt operators. The (minimal) geodesics and the geodesic distance are computed. It is shown that this metric, which is complete, generalizes the well known non positive metric for positive defin...

متن کامل

G-frames and Hilbert-Schmidt operators

In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

Infinite-dimensional Log-Determinant divergences II: Alpha-Beta divergences

This work presents a parametrized family of divergences, namely Alpha-Beta LogDeterminant (Log-Det) divergences, between positive definite unitized trace class operators on a Hilbert space. This is a generalization of the Alpha-Beta Log-Determinant divergences between symmetric, positive definite matrices to the infinite-dimensional setting. The family of Alpha-Beta Log-Det divergences is highl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014